
Common Errors in C/C++ Code and Static Analysis

Red Hat

Onďrej Vaš́ık and Kamil Dudka

2011-02-17

Abstract

Overview of common programming mistakes in the C/C++

code, and comparison of a few available static analysis tools
that can detect them.

Agenda

1 Static Analysis – What Does It Mean?

2 Common Code Weaknesses in C/C++ Programs

3 Available Tools for Static Analysis

4 Beyond Static Analysis

1 / 21

Static Analysis – What Does It Mean?

Static Analysis

generic definition: analysis of code without executing it

various kinds of tools – generic + specialized

already done by the compiler (optimization, warnings, . . .)

we are interested in using static analysis to find bugs

2 / 21

Static Analysis – What Does It Mean?

Static Analysis – Finding Bugs

usually requires code that we are able to compile

usually fast (time of analysis close to time of compilation)

high level of automation

can’t cover all bugs in code

problem with false positives

any code change = risk of regressions

3 / 21

Static Analysis – What Does It Mean?

Static Analysis Techniques

error patterns – missing break, stray semicolon, . . .

enhanced type checking – may use attributes, such
as attribute ((address space(num))) in sparse

data-flow analysis – solving of data flow equations,
usually works at the CFG level

abstract interpretation – evaluates a program for all
possible inputs at once over an abstract domain

4 / 21

Agenda

1 Static Analysis – What Does It Mean?

2 Common Code Weaknesses in C/C++ Programs

3 Available Tools for Static Analysis

4 Beyond Static Analysis

Common Code Weaknesses in C/C++ Programs

Common Code Weaknesses in C/C++ Programs

CWE from MITRE (Common Weakness Enumeration)
(http://cwe.mitre.org/data/definitions/398.html)

static analysis is especially good for:

boundary checks
resource leak checks
memory safety checks
dead code checks
uninitialized/unused variables checks
race conditions / synchronization checks
various ”coded by humans” issues

5 / 21

http://cwe.mitre.org/data/definitions/398.html

Common Code Weaknesses in C/C++ Programs

Boundary Problems

static/dynamic buffer overflows/underflows (CWE-125,
CWE-120, CWE-170, CWE-124)

types incompatibilities (signed/unsigned) (CWE-194)
signedness overflow issue that caused segfault with multivolumes in star:

diff -urNp star-1.5.1-orig/star/buffer.c star-1.5.1/star/buffer.c

--- star-1.5.1-orig/star/buffer.c

+++ star-1.5.1/star/buffer.c

@@ -799,7 +799,7 @@ initbuf(nblocks)

bigptr = bigbuf = malloc((size t) bufsize+10+pagesize,

"buffer");

- bigptr = bigbuf = (char *)roundup((Intptr t)bigptr, pagesize);

+ bigptr = bigbuf = (char *)roundup((UIntptr t)bigptr, pagesize);

fillbytes(bigbuf, bufsize, ’\0’);

fillbytes(&bigbuf[bufsize], 10, ’U’);

6 / 21

http://cwe.mitre.org/data/definitions/125.html
http://cwe.mitre.org/data/definitions/120.html
http://cwe.mitre.org/data/definitions/170.html
http://cwe.mitre.org/data/definitions/124.html
http://cwe.mitre.org/data/definitions/194.html

Common Code Weaknesses in C/C++ Programs

Resource Leaks

memory leaks (CWE-404)

descriptor leaks (CWE-404)
recent util-linux resource leak fix in libmount/src/utils.c

@@ -427,6 +427,7 @@

static int get filesystems(const char *filename, char ***filesystems, const char *pattern)

{

+ int rc = 0;

FILE *f;

char line[128];

@@ -436,7 +437,6 @@

while (fgets(line, sizeof(line), f)) {

char name[sizeof(line)];

- int rc;

if (*line == ’#’ || strncmp(line, "nodev", 5) == 0)

continue;

@@ -446,9 +446,11 @@

rc = add filesystem(filesystems, name);

if (rc)

- return rc;

+ break;

}

- return 0;

+ fclose(f);

+ return rc;

}

7 / 21

http://cwe.mitre.org/data/definitions/404.html
http://cwe.mitre.org/data/definitions/404.html

Common Code Weaknesses in C/C++ Programs

Memory Safety

dereference null (CWE-476), use after free (CWE-416)

double free (CWE-415), bad free (CWE-590)
dual doublefree due to missing exit in policycoreutils(sepolgen-ifgen-attr-helper.c):

@@ -212,6 +213,7 @@ int main(int argc, char **argv)

/* Open the output policy. */

fp = fopen(argv[2], "w");

if (fp == NULL) {

fprintf(stderr, "error opening output file\n");

policydb destroy(p);

free(p);

+ return -1;

}

...

policydb destroy(p);

free(p);

fclose(fp);

8 / 21

http://cwe.mitre.org/data/definitions/476.html
http://cwe.mitre.org/data/definitions/416.html
http://cwe.mitre.org/data/definitions/415.html
http://cwe.mitre.org/data/definitions/590.html

Common Code Weaknesses in C/C++ Programs

Dead Code Checking

unnecessary code (CWE-561)

wrong error check (CWE-252, CWE-665, CWE-569)

Uninitialized/Unused Variables

unnecessary variable handling (CWE-563)

using unitialized variable (CWE-457, CWE-456)

9 / 21

http://cwe.mitre.org/data/definitions/561.html
http://cwe.mitre.org/data/definitions/252.html
http://cwe.mitre.org/data/definitions/665.html
http://cwe.mitre.org/data/definitions/569.html
http://cwe.mitre.org/data/definitions/563.html
http://cwe.mitre.org/data/definitions/457.html
http://cwe.mitre.org/data/definitions/456.html

Common Code Weaknesses in C/C++ Programs

Race Conditions / Synchronization Checks

TOCTOU (time of check / time of use) (CWE-367)

unsynchronized access to shared data in multithread apps
(CWE-362)

issues with locks (CWE-362)
potential deadlock in kernel on fail path (https://lkml.org/lkml/2010/9/4/73)

diff --git a/drivers/net/bna/bnad.c b/drivers/net/bna/bnad.c

@@ -2706,7 +2706,7 @@ bnad set rx mode(struct net device *netdev)

kzalloc((mc count + 1) * ETH ALEN,

GFP ATOMIC);

if (!mcaddr list)

- return;

+ goto unlock;

memcpy(&mcaddr list[0], &bnad bcast addr[0], ETH ALEN);

@@ -2719,6 +2719,7 @@ bnad set rx mode(struct net device *netdev)

/* Should we enable BNAD CF ALLMULTI for err != 0 ? */

kfree(mcaddr list);

}

+unlock:

spin unlock irqrestore(&bnad->bna lock, flags);

}

10 / 21

http://cwe.mitre.org/data/definitions/367.html
http://cwe.mitre.org/data/definitions/362.html
http://cwe.mitre.org/data/definitions/362.html
https://lkml.org/lkml/2010/9/4/73

Common Code Weaknesses in C/C++ Programs

Various ”coded by humans” Issues

various cut&paste issues, missing breaks (CWE-484)

priority of operators issues(CWE-569)

stray semicolon after if (CWE-398)

missing asterisks in pointer operations (CWE-476)
http://github.com/bagder/curl/compare/62ef465...7aea2d5

diff --git a/lib/rtsp.c b/lib/rtsp.c

--- a/lib/rtsp.c

+++ b/lib/rtsp.c

@@ -709,7 +709,7 @@

while(*start && ISSPACE(*start))

start++;

- if(!start) {

+ if(!*start) {

failf(data, "Got a blank Session ID");

}

else if(data->set.str[STRING RTSP SESSION ID]) {

11 / 21

http://cwe.mitre.org/data/definitions/484.html
http://cwe.mitre.org/data/definitions/569.html
http://cwe.mitre.org/data/definitions/398.html
http://cwe.mitre.org/data/definitions/476.html
http://github.com/bagder/curl/compare/62ef465...7aea2d5

Common Code Weaknesses in C/C++ Programs

Defensive Programming

not really static analysis technique, but good habbit

use compiler protection mechanisms

D FORTIFY SOURCE=2

stack-protector, PIE/PIC, RELRO, ExecShield
don’t ignore warnings (-Wall -Wextra)

never trust anyone, never expect anything

memory boundaries
check return codes/error codes
use descriptors
respect uid/gids, don’t over escalate privileges

http://www.akkadia.org/drepper/defprogramming.pdf

12 / 21

http://www.akkadia.org/drepper/defprogramming.pdf

Agenda

1 Static Analysis – What Does It Mean?

2 Common Code Weaknesses in C/C++ Programs

3 Available Tools for Static Analysis

4 Beyond Static Analysis

Available Tools for Static Analysis

Available Tools for Static Analysis

GCC – compile cleanly at high warning levels

GCC plug-ins – suitable for projects natively compiled by GCC

Clang Static Analyzer – uses LLVM Compiler Infrastructure

sparse – developed and used by kernel maintainers (C only)

cppcheck – easy to use, low rate of false positives

commercial tools for static analysis (Coverity, . . .)

research tools for static analysis (frama-c, . . .)

some tools are not yet ready for industrial software
(uno, splint, . . .)

13 / 21

Available Tools for Static Analysis

GCC Plug-ins

plug-in

binary
code

generator
parser optimizer

pre-
processor

object
file

gcc

source
file

as easy to use as adding a flag to CFLAGS

no parsing errors, no unrecognized compilation flags

one intermediate code used for both analysis and building

repoquery --repoid=rawhide-source --arch=src --whatrequires gcc-plugin-devel

gcc-python-plugin – allows to write GCC plug-ins in python

DragonEgg – allows to use LLVM as a GCC backend

14 / 21

Available Tools for Static Analysis

Clang Static Analyzer

based on LLVM Compiler Infrastructure

code needs to compile with LLVM

for an autoconf-based project, you can hook clang this way:

1 scan-build ./configure ...

2 scan-build make

3 scan-view ...

the steps above may fail on projects using some obscure
build systems (e.g. ksh is known to cause problems)

15 / 21

Available Tools for Static Analysis

sparse

supports only C, not fully compatible with GCC

able to analyze the whole Linux kernel

provides a GCC wrapper called cgcc (make CC=cgcc)

provides a library to build custom analyzers

sparse-llvm – an LLVM front-end (still under development)

16 / 21

Available Tools for Static Analysis

cppcheck

uses its own parser and preprocessor

reports only erorrs by default

can be run directly on the sources (not always optimal)

using the options -D and -I may help significantly

--template gcc makes the output compatible with GCC

-jN allows to run cppcheck in parallel

[TODO: demo – libedit]

17 / 21

Available Tools for Static Analysis

Coverity

enterprise tool, not freely available

often used to analyze free software – http://scan.coverity.com

combination of all above mentioned static analysis techniques

modular, various checkers

advanced statistical methods for elimination of false positives

18 / 21

http://scan.coverity.com

Available Tools for Static Analysis

Coverity – How Do We Use It in Red Hat?

scans of minor RHEL updates
=⇒ prevent new defects introduced by backports and new
features

scans selected package set from Fedora Rawhide
=⇒ packages with potential for next RHEL, working with
upstream, to improve overall source code quality

1500+ packages, 150M LoC, 170k pot. defects, 90% scan
success rate
util-linux (70 bugs), ksh (50 bugs), e2fsprogs (40 bugs) and
many other cleanups upstream based on scans

scans of upstream projects developed by Red Hat
=⇒ keeping upstream code quality at high level

19 / 21

Agenda

1 Static Analysis – What Does It Mean?

2 Common Code Weaknesses in C/C++ Programs

3 Available Tools for Static Analysis

4 Beyond Static Analysis

Beyond Static Analysis

Beyond Static Analysis

static analysis is a good bug-hunting technique, but what
about false negatives?

some properties are hard to check using static analysis only

absence of memory leaks
error label reachability
program termination

software verification methods can guarantee zero false
negatives for checking the properties above

http://sv-comp.sosy-lab.org/results/index.php

20 / 21

http://sv-comp.sosy-lab.org/results/index.php

Beyond Static Analysis

Conclusion

there is a lot of ready to use static analysis tools out there

it is important not to rely on a single static analysis tool

many of them are open source projects

currently, the key problem of static analysis tools are
false positives, which need to be filtered out manually

21 / 21

	Static Analysis – What Does It Mean?
	Common Code Weaknesses in C/C++ Programs
	Available Tools for Static Analysis
	Beyond Static Analysis

