
Static Analysis and Formal Verification at Red Hat

Kamil Dudka <kdudka@redhat.com>

September 11th 2019

Abstract

Red Hat uses static analyzers to automatically find bugs in the source code of Red Hat Enterprise
Linux. The distribution consists of approx. 3000 RPM packages and 300 million lines of code.
Red Hat develops an open source tool that can statically analyze this amount of software in a fully
automatic way. We give it source RPM packages of our choice and get the results of selected
static analyzers in a unified machine-readable format. This talk will cover which static analyzers
are used by Red Hat and how their results are handled. Red Hat is now also experimenting
with formal verifiers Symbiotic and Divine, which are developed by research groups of Masaryk
University. Is there any chance to integrate such tools into Red Hat’s static analysis workflow?

Why do we use static analysis at Red Hat?

... to find programming mistakes soon enough – example:

Error: SHELLCHECK_WARNING:
/etc/rc.d/init.d/squid:136:10: warning: Use "${var:?}" to ensure this never expands to /* .
134| RETVAL=$?
135| if [$RETVAL -eq 0] ; then
136|-> rm -rf $SQUID_PIDFILE_DIR/*
137| start
138| else

https://bugzilla.redhat.com/1202858 – [UNRELEASED]
restarting testing build of squid results in deleting all files
in hard-drive

Static analysis is required for Common Criteria certification.

1 / 10

https://bugzilla.redhat.com/1202858

Static Analysis at Red Hat in Numbers

RHEL-8 Beta static analysis mass scan in July 2018

analyzed 318 million LoC (Lines of Code) in 3390 packages

95% packages scanned successfully

approx. 370 000 potential bugs detected in total

approx. one potential bug per 1000 LoC

2 / 10

csmock

command-line tool that runs static analyzers

one interface, one output format, plug-in API

fully open-source, available in Fedora/CentOS

SRPM list of bugscsmock

CoverityShellCheckCppcheckClanggcc

mock

3 / 10

csmock – Supported Static Analyzers

C C++ Java Go JavaScript PHP Python Ruby Shell

gcc X X
Clang X X
Cppcheck X X
Coverity X X X X X X X X
ShellCheck X
Pylint X
Bandit X
Smatch X

Need more?
https://github.com/mre/awesome-static-analysis#user-content-programming-languages-1

4 / 10

https://github.com/mre/awesome-static-analysis#user-content-programming-languages-1

What is important for developers?

The static analyzers need to:

be fully automatic

provide reasonable signal to noise ratio

provide reproducible and consistent results

be approximately as fast as compilation of the package

support differential scans:

added/fixed bugs in an update?

https://github.com/kdudka/csdiff

5 / 10

https://github.com/kdudka/csdiff

csmock – Output Format

6 / 10

csmock – Output Format

checker

key event
CWE ID

other events
location info

message associated with the key event

6 / 10

csmock – Output Format (Trace Events)

Error: RESOURCE_LEAK (CWE-772):
src/fptr.c:447: cond_true: Condition "i < l->nrefs", taking true branch.
src/fptr.c:448: cond_true: Condition "(f = (struct opd_fptr *)l->u.refp[i]->ent)->ent == NULL", taking true branch.
src/fptr.c:450: alloc_fn: Storage is returned from allocation function "calloc".
src/fptr.c:450: var_assign: Assigning: "e" = storage returned from "calloc(24UL, 1UL)".
src/fptr.c:451: cond_false: Condition "e == NULL", taking false branch.
src/fptr.c:456: if_end: End of if statement.
src/fptr.c:462: loop: Jumping back to the beginning of the loop.
src/fptr.c:447: loop_begin: Jumped back to beginning of loop.
src/fptr.c:447: cond_true: Condition "i < l->nrefs", taking true branch.
src/fptr.c:448: cond_true: Condition "(f = (struct opd_fptr *)l->u.refp[i]->ent)->ent == NULL", taking true branch.
src/fptr.c:450: overwrite_var: Overwriting "e" in "e = calloc(24UL, 1UL)" leaks the storage that "e" points to.
448| if ((f = (struct opd_fptr *) l->u.refp[i]->ent)->ent == NULL)
449| {
450|-> e = calloc (sizeof (struct opd_ent), 1);
451| if (e == NULL)
452| {

6 / 10

Example of a Fix
--- a/src/fptr.c

+++ b/src/fptr.c

@@ -438,28 +438,29 @@

GElf Addr

opd size (struct prelink info *info, GElf Word entsize)

{

struct opd lib *l = info->ent->opd;

int i;

GElf Addr ret = 0;

struct opd ent *e;

struct opd fptr *f;

for (i = 0; i < l->nrefs; ++i)

if ((f = (struct opd fptr *) l->u.refp[i]->ent)->ent == NULL)

{

e = calloc (sizeof (struct opd ent), 1);

if (e == NULL)

{

error (0, ENOMEM, "%s: Could not create OPD table",

info->ent->filename);

return -1;

}

e->val = f->val;

e->gp = f->gp;

e->opd = ret | OPD ENT NEW;

+ f->ent = e;

ret += entsize;

}

return ret;

}

7 / 10

Covscan

Red Hat’s internal service that runs csmock.

Covscan
hub

worker2

worker1

...

user2

user1

...

Errata
Tool

Platform
CI

8 / 10

Integration of Formal Verifiers – Goal

SRPM list of bugscsmock

DivineSymbioticCPAcheckerCBMCgcc

mock

9 / 10

Integration of Formal Verifiers – Reality

Problems:

Our developers fail to compile formal verifiers.

Formal verifiers fail to compile our source code.

How to deal with missing models of external functions?

RPM packages have 0..n definitions of main().

Problems with scalability have not yet been reached.

Solutions:

Symbiotic and Divine are now available as RPM packages.

Working on support for dynamic analyzers in csmock
(for RPMs that run test-suite during the build).

10 / 10

