
Static Analysis of a Linux Distribution

Kamil Dudka <kdudka@redhat.com>

Red Hat, Inc.

November 26th 2015



How to find programming mistakes efficiently?

0 users (preferably volunteers)

1 Automatic Bug Reporting Tool

2 code review, automated tests

3 static analysis!

1 / 16



Static Analysis

is a good alternative to testing,

can detect bugs fully automatically,

can detect bugs before the code even runs!

2 / 16



Agenda

1 Terminology

2 Static Analysis of a Linux Distribution



Terminology

Linux Distribution

operating system (OS)

based on the Linux kernel

a lot of other programs running in user space

usually open source

3 / 16



Terminology

Upstream vs. Downstream

upstream SW projects – usually independent

downstream distribution of upstream SW projects

Fedora and RHEL use the RPM package manager

Files on the file system owned by packages:

Dependencies form an oriented graph over packages.

We can query package database.

We can verify installed packages.

4 / 16



Terminology

Fedora vs. RHEL

Fedora

new features available early

driven by the community (developers, users, . . . )

RHEL (Red Hat Enterprise Linux)

stability and security of running systems

driven by Red Hat (and its customers)

5 / 16



Terminology

Where do RPM packages come from?

Developers maintain source RPM packages (SRPMs).

Binary RPMs can be built from SRPMs using rpmbuild:

rpmbuild --rebuild git-2.6.3-1.fc24.src.rpm

Binary RPMs can be then installed on the system:

sudo dnf install git

6 / 16



Terminology

Reproducible builds

Local builds are not reproducible.

mock – chroot-based tool for building RPMs:

mock -r fedora-rawhide-i386 git-2.6.3-1.fc24.src.rpm

koji – service for scheduling build tasks

koji build rawhide git-2.6.3-1.fc24.src.rpm

7 / 16



Agenda

1 Terminology

2 Static Analysis of a Linux Distribution



Static Analysis of a Linux Distribution

Static Analysis of a Linux Distribution

approx. 150 Million lines of C/C++ code in RHEL-7

huge number of (potential?) defects in certain projects

thousands of packages developed independently of each other

no control over technologies and programming languages

no control over upstream coding style

8 / 16



Static Analysis of a Linux Distribution

Which static analyzers?

Not many of them are ready for scanning a Linux distribution.

Some analyzers are tweaked for a particular project
(e.g. sparse for kernel).

Using a single static analyzer appeared to be insufficient.

How to combine multiple static analyzers efficiently?

Currently supported by csmock:
GCC, Clang, Cppcheck, Shellcheck, Pylint, Coverity

9 / 16



Static Analysis of a Linux Distribution

What is important for developers?

The static analysis tools need to:

be fully automatic

provide reasonable signal to noise ratio

be approximately as fast as compilation of the package

deliver results in a predictable amount of time =⇒ timeouts!

10 / 16



Static Analysis of a Linux Distribution

Research Prototypes

Researchers are done when their tool works on a few examples
of their choice. (phase 0)

SW companies are interested in tools that can reliably process
a significant amount of their code base. (phase 1)

99% of work on developing a successful tool is the transition:
phase 0 −→ phase 1

example – Predator:
http://www.fit.vutbr.cz/research/groups/verifit/tools/predator

11 / 16

http://www.fit.vutbr.cz/research/groups/verifit/tools/predator


Static Analysis of a Linux Distribution

Priority Assessment Problem

Developers say:

”I have 200+ already known bugs in my project waiting
for a fix. Why should I care about additional bugs that
users are not aware of yet?”

Not all defects are equally important to be fixed!

Scoring systems like CWE (Common Weakness Enumeration)

. . . but none of them is universally applicable.

12 / 16



Static Analysis of a Linux Distribution

Differential scans

We know that our packages contain a lot of potential bugs.

It is easy to create new bugs while trying to fix existing bugs.

Which bugs were added/fixed in an update of something?

An example using the csbuild utility – demo:

csbuild -c "make -j5"

csbuild -g curl-7_40_0..master -c "make -j5"

csbuild -g curl-7_40_0..master --git-bisect \

-c "make clean && make -j5"

13 / 16



Static Analysis of a Linux Distribution

Upstream vs. Enterprise

Different approaches to (differential) static analysis:

Upstream

Fix as many defects as possible.

False positive ratio increases over time!

Enterprise

Need to verify code changes in ancient SW.

5–10% of defects are usually detected as new in an update.

5–10% of them are usually confirmed as real by developers.

14 / 16



Static Analysis of a Linux Distribution

Processing the Results of Static Analysis

Some tools come with a user interface for waiving defects.

Per-defect waivers do not scale for a Linux distribution.

Certain developers prefer to use terminal over web browser.

Utilities processing text line-by-line are not optimal for this:

grep −→ csgrep

sort −→ cssort

. . .

https://github.com/kdudka/csdiff

15 / 16

https://github.com/kdudka/csdiff


Static Analysis of a Linux Distribution

Continuous Integration

It is expensive to fix bugs detected late in the release schedule.

It is difficult and risky to fix bugs in already released products.

We would like to catch bugs at the time they are created.

An example using the csbuild utility – demo:

csbuild -c "./buildconf && ./configure && make -j5" \

--install libtool --git-bisect \

--gen-travis-yml > .travis.yml

git add .travis.yml

git commit -m "notify me about newly introduced defects"

git push

16 / 16


	Terminology
	Static Analysis of a Linux Distribution

