
Static Analysis of a Linux Distribution

Kamil Dudka <kdudka@redhat.com>

October 7th 2019

How to find programming mistakes efficiently?

0 users (preferably volunteers)

1 Automatic Bug Reporting Tool (ABRT)

2 code review, automated tests, dynamic analysis

3 static analysis!

1 / 24

Why do we use static analysis at Red Hat?

... to find programming mistakes soon enough – example:

Error: SHELLCHECK_WARNING:
/etc/rc.d/init.d/squid:136:10: warning: Use "${var:?}" to ensure this never expands to /* .
134| RETVAL=$?
135| if [$RETVAL -eq 0] ; then
136|-> rm -rf $SQUID_PIDFILE_DIR/*
137| start
138| else

https://bugzilla.redhat.com/1202858 – [UNRELEASED]
restarting testing build of squid results in deleting all files
in hard-drive

Static analysis is required for Common Criteria certification.

2 / 24

https://bugzilla.redhat.com/1202858

Agenda

1 Code Review, Dynamic Analysis, Fuzzing

2 Linux Distribution, Reproducible Builds

3 Static Analysis of a Linux Distribution

4 Formal Verification

Code Review, Dynamic Analysis, Fuzzing

Code Review

design (anti-)patterns

error handling (OOM, permission denied, . . .)

validation of input data (headers, length, encoding, . . .)

sensitive data treatment (avoid exposing private keys, . . .)

use of crypto algorithms

resource management

3 / 24

Code Review, Dynamic Analysis, Fuzzing

Dynamic Analysis

good to have some test-suite to begin with

memory error detectors, profilers, e.g. valgrind

tools to measure test coverage, e.g. gcov/lcov

compiler instrumentation, e.g. GCC built-in sanitizers
(address sanitizer, thread sanitizer, UB sanitizer, . . .)

not so easy to automate as static analysis

4 / 24

Code Review, Dynamic Analysis, Fuzzing

Fuzzing

feeding programs with unusual input

can be combined with valgrind, GCC sanitizers, etc.

radamsa – general purpose data fuzzer

$ cat file | radamsa | program

OSS-Fuzz – continuous fuzzing of open source software

service provided by Google

many security issues detected e.g. in curl

5 / 24

Agenda

1 Code Review, Dynamic Analysis, Fuzzing

2 Linux Distribution, Reproducible Builds

3 Static Analysis of a Linux Distribution

4 Formal Verification

Linux Distribution, Reproducible Builds

Linux Distribution

operating system (OS)

based on the Linux kernel

a lot of other programs running in user space

usually open source

6 / 24

Linux Distribution, Reproducible Builds

Upstream vs. Downstream

upstream SW projects – usually independent

downstream distribution of upstream SW projects

Red Hat uses the RPM package manager

files on the file system owned by packages:

dependencies form an oriented graph over packages

we can query package database

we can verify installed packages

7 / 24

Linux Distribution, Reproducible Builds

Fedora vs. RHEL

Fedora

new features available early

driven by the community (developers, users, . . .)

RHEL (Red Hat Enterprise Linux)

stability and security of existing deployments

driven by Red Hat (and its customers)

8 / 24

Linux Distribution, Reproducible Builds

Where do RPM packages come from?

developers maintain source RPM packages (SRPMs)

binary RPMs can be built from SRPMs using rpmbuild:

rpmbuild --rebuild git-2.6.3-1.fc24.src.rpm

binary RPMs can be then installed on the system:

sudo dnf install git

9 / 24

Linux Distribution, Reproducible Builds

Reproducible Builds

local builds are not reproducible

mock – chroot-based tool for building RPMs:

mock -r fedora-rawhide-i386 git-2.6.3-1.fc24.src.rpm

koji – service for scheduling build tasks

koji build rawhide git-2.6.3-1.fc24.src.rpm

easy to hook static analyzers on the build process!

10 / 24

Linux Distribution, Reproducible Builds

Reproducible Builds – Obstacles

build env not 100% isolated from host env

toolchain (compiler, linker, glibc, . . .) evolves

parallel builds with missing dependencies (tricky to debug)

installation of binary RPMs not (always) reproducible

too many unexpected side effects – examples:

SMTP server fails to build on up2date kernel

one-line change of a man page doubles size of curl binary

cookies and certificates in curl upstream test-suite expire

autoconf tests: https://github.com/curl/curl/commit/curl-7 49 1-45-gb2dcf0347

11 / 24

https://github.com/curl/curl/commit/curl-7_49_1-45-gb2dcf0347

Linux Distribution, Reproducible Builds

Reproducible Builds – Best Practices

use git archive to create tarballs
(does not work well with autotools)

isolate build env from host env
(chroot, mock, containers, VMs)

do not use compiler flags like -mtune=native

disable Internet acess during the build

sign release tags and release tarballs

12 / 24

Agenda

1 Code Review, Dynamic Analysis, Fuzzing

2 Linux Distribution, Reproducible Builds

3 Static Analysis of a Linux Distribution

4 Formal Verification

Static Analysis of a Linux Distribution

Static Analysis at Red Hat in Numbers

RHEL-8 Beta static analysis mass scan in July 2018

analyzed 318 million LoC (Lines of Code) in 3390 packages

95% packages scanned successfully

approx. 370 000 potential bugs detected in total

approx. one potential bug per 1000 LoC

13 / 24

Static Analysis of a Linux Distribution

csmock

command-line tool that runs static analyzers

one interface, one output format, plug-in API

fully open-source, available in Fedora/CentOS

SRPM list of bugscsmock

CoverityShellCheckCppcheckClanggcc

mock

14 / 24

Static Analysis of a Linux Distribution

csmock – Supported Static Analyzers

C C++ Java Go JavaScript PHP Python Ruby Shell

gcc X X
Clang X X
Cppcheck X X
Coverity X X X X X X X X
ShellCheck X
Pylint X
Bandit X
Smatch X

Need more?
https://github.com/mre/awesome-static-analysis#user-content-programming-languages-1

15 / 24

https://github.com/mre/awesome-static-analysis#user-content-programming-languages-1

Static Analysis of a Linux Distribution

What is important for developers?

The static analyzers need to:

be fully automatic

provide reasonable signal to noise ratio

provide reproducible and consistent results

be approximately as fast as compilation of the package

support differential scans:

added/fixed bugs in an update?

https://github.com/kdudka/csdiff

16 / 24

https://github.com/kdudka/csdiff

Static Analysis of a Linux Distribution

csmock – Output Format

17 / 24

Static Analysis of a Linux Distribution

csmock – Output Format

checker

key event
CWE ID

other events
location info

message associated with the key event

17 / 24

Static Analysis of a Linux Distribution

csmock – Output Format (Trace Events)

Error: RESOURCE_LEAK (CWE-772):
src/fptr.c:447: cond_true: Condition "i < l->nrefs", taking true branch.
src/fptr.c:448: cond_true: Condition "(f = (struct opd_fptr *)l->u.refp[i]->ent)->ent == NULL", taking true branch.
src/fptr.c:450: alloc_fn: Storage is returned from allocation function "calloc".
src/fptr.c:450: var_assign: Assigning: "e" = storage returned from "calloc(24UL, 1UL)".
src/fptr.c:451: cond_false: Condition "e == NULL", taking false branch.
src/fptr.c:456: if_end: End of if statement.
src/fptr.c:462: loop: Jumping back to the beginning of the loop.
src/fptr.c:447: loop_begin: Jumped back to beginning of loop.
src/fptr.c:447: cond_true: Condition "i < l->nrefs", taking true branch.
src/fptr.c:448: cond_true: Condition "(f = (struct opd_fptr *)l->u.refp[i]->ent)->ent == NULL", taking true branch.
src/fptr.c:450: overwrite_var: Overwriting "e" in "e = calloc(24UL, 1UL)" leaks the storage that "e" points to.
448| if ((f = (struct opd_fptr *) l->u.refp[i]->ent)->ent == NULL)
449| {
450|-> e = calloc (sizeof (struct opd_ent), 1);
451| if (e == NULL)
452| {

17 / 24

Static Analysis of a Linux Distribution

Example of a Fix
--- a/src/fptr.c

+++ b/src/fptr.c

@@ -438,28 +438,29 @@

GElf Addr

opd size (struct prelink info *info, GElf Word entsize)

{

struct opd lib *l = info->ent->opd;

int i;

GElf Addr ret = 0;

struct opd ent *e;

struct opd fptr *f;

for (i = 0; i < l->nrefs; ++i)

if ((f = (struct opd fptr *) l->u.refp[i]->ent)->ent == NULL)

{

e = calloc (sizeof (struct opd ent), 1);

if (e == NULL)

{

error (0, ENOMEM, "%s: Could not create OPD table",

info->ent->filename);

return -1;

}

e->val = f->val;

e->gp = f->gp;

e->opd = ret | OPD ENT NEW;

+ f->ent = e;

ret += entsize;

}

return ret;

}

18 / 24

Static Analysis of a Linux Distribution

Example – Differential Scan of logrotate (1/2)

Someone opened a pull request for logrotate:
https://github.com/logrotate/logrotate/pull/146:

logrotate.c:251:15: warning: Result of ’malloc’ is

converted to a pointer of type ’struct logStates’,

which is incompatible with sizeof operand type

’struct logState’

Next day we agreed on a fix and pushed it:
https://github.com/logrotate/logrotate/pull/149

19 / 24

https://github.com/logrotate/logrotate/pull/146
https://github.com/logrotate/logrotate/pull/149

Static Analysis of a Linux Distribution

Example – Differential Scan of logrotate (2/2)

One day before the release I ran a differential scan
with the csbuild utility – demo:

git clone https://github.com/logrotate/logrotate.git

cd logrotate && git reset --hard eb322705^

autoreconf -fiv && ./configure

BUILD_CMD=’make clean && make -j9’

csbuild -c $BUILD_CMD -g 3.12.3..master --git-bisect

Luckily, I was able to fix it properly before the release:
https://github.com/logrotate/logrotate/commit/eb322705

csbuild -c $BUILD_CMD -g origin..master --print-fixed

20 / 24

https://github.com/logrotate/logrotate/commit/eb322705

Static Analysis of a Linux Distribution

Upstream vs. Enterprise

Different approaches to static analysis:

upstream – fix as many bugs as possible

false positive ratio increases over time!

enterprise – run differential scans to verify code changes

up to 10% of bugs usually detected as new in an update

up to 10% of them usually confirmed as real by developers

21 / 24

Static Analysis of a Linux Distribution

Covscan

Red Hat’s internal service that runs csmock.

Covscan
hub

worker2

worker1

...

user2

user1

...

Errata
Tool

Platform
CI

22 / 24

Agenda

1 Code Review, Dynamic Analysis, Fuzzing

2 Linux Distribution, Reproducible Builds

3 Static Analysis of a Linux Distribution

4 Formal Verification

Formal Verification

Integration of Formal Verifiers – Goal

SRPM list of bugscsmock

DivineSymbioticCPAcheckerCBMCgcc

mock

Need more?
https://sv-comp.sosy-lab.org/2019/results/results-verified/

23 / 24

https://sv-comp.sosy-lab.org/2019/results/results-verified/

Formal Verification

Integration of Formal Verifiers – Reality

Problems:

Our developers fail to compile formal verifiers.

Formal verifiers fail to compile our source code.

How to deal with missing models of external functions?

RPM packages have 0..n definitions of main().

Problems with scalability have not yet been reached.

Solutions:

Symbiotic and Divine are now available as RPM packages.

Working on support for dynamic analyzers in csmock
(for RPMs that run test-suite during the build).

24 / 24

Slides Available Online

https://kdudka.fedorapeople.org/muni19.pdf

https://kdudka.fedorapeople.org/muni19.pdf

	Code Review, Dynamic Analysis, Fuzzing
	Linux Distribution, Reproducible Builds
	Static Analysis of a Linux Distribution
	Formal Verification

