Static Analysis of a Linux Distribution

Red Hat
Kamil Dudka
February 28th 2022

& RedHat
Why do we use static analysis at Red Hat?

... to find programming mistakes soon enough — example:

Error: SHELLCHECK _WARNING:
/etc/rc.d/init.d/squid:136:10: warning: Use "${var:?}" to ensure this never expands to /* .

t 136 -> rm -rf $SQUID_PIDFILE DIR/*

https://bugzilla.redhat.com/1202858 — [UNRELEASED] restarting
testing build of squid results in deleting all files in hard-drive

Static analysis is required for Common Criteria certification.

1/26

https://bugzilla.redhat.com/1202858

& RedHat
Agenda

Linux Distribution, Reproducible Builds

Static Analysis of a Linux Distribution

Dynamic Analysis and Formal Verification

Linux Distribution, Reproducible Builds

& RedHat

Linux Distribution

operating system (OS)

based on the Linux kernel

1o,

a lot of other programs running in user space

N\
Libre
@ python APaChe Q(e, Office]

usually open source

2/26

& RedHat

Upstream vs. Downstream

Upstream SW projects — usually independent
Downstream distribution of upstream SW projects

Red Hat uses the RPM package manager rpm
Files on the file system owned by RPM packages:
Dependencies form an oriented graph over packages.

We can query package database.

We can verify installed packages.

Linux Distribution, Reproducible Builds

3/26

& RedHat
Fedora vs. RHEL

Fedora 0

new features available early

driven by the community (developers, users, ...

RHEL (Red Hat Enterprise Linux) ‘

stability and security of existing deployments

driven by Red Hat (and its customers)

)

Linux Distribution, Reproducible Builds

4/26

& RedHat
Where do RPM packages come from?

Developers maintain source RPM packages (SRPMs).

Binary RPMs can be built from SRPMs using rpmbuild:

rpmbuild --rebuild git-2.30.2-1.fc34.src.rpm

Binary RPMs can be then installed on the system:

sudo dnf install git

Linux Distribution, Reproducible Builds

5/26

Linux Distribution, Reproducible Builds

& RedHat
Reproducible Builds

Local builds are not reproducible.

mock — chroot-based tool for building RPMs:

mock -r fedora-rawhide-x86_64 git-2.30.2-1.fc34.src.rpm

koji — service for scheduling build tasks

koji build rawhide git-2.30.2-1.fc34.src.rpm
Easy to hook static analyzers on the build process!

Who cares about reproducible builds?
https://reproducible-builds.org/who/projects/

6/26

https://reproducible-builds.org/who/projects/

& RedHat
Agenda

Static Analysis of a Linux Distribution

Static Analysis of a Linux Distribution

& RedHat

Static Analysis of a Linux Distribution

Thousands of packages developed independently of each other.
Huge number of (potential?) defects in certain projects.

No control over technologies and programming languages.

No control over upstream coding style.

There is no person that would be familiar with all the code of a big project.

7/26

Static Analysis of a Linux Distribution

& RedHat
Static Analysis at Red Hat in Numbers

Preliminary scan of all RHEL-9 packages in February 2021.
Analyzed 480 million LoC (Lines of Code) in 3700 packages.
98.6 % packages scanned successfully.

Approx. 680 000 potential bugs detected in total.

Approx. one potential bug per each 750 LoC.

8/26

Static Analysis of a Linux Distribution

& RedHat
Analysis of RPM Packages

Command-line tool to run static analyzers on RPM packages.
One interface, one output format, plug-in API for (static) analyzers.

Fully open-source, available in Fedora and CentOS.

SRPM == mm -)l csmock I- =P list of bugs

clang cppcheck shellcheck coverity

9/26

Static Analysis of a Linux Distribution

& RedHat

csmock — Supported Static Analyzers

C++ C# Java Go JavaScript PHP Python Ruby Shell

v

gcc

gcc -fanalyzer
clang --analyze
cppcheck
coverity
shellcheck v
pylint v
bandit v
infer v |V

smatch v

ANENENENENE

v
v
v

Need more?

https://github.com/mre/awesome-static-analysis#user-content-programming-languages-1

10/26

https://github.com/mre/awesome-static-analysis#user-content-programming-languages-1

Static Analysis of a Linux Distribution
& RedHat
What is important for developers?

The static analyzers need to:

be fully automatic
provide reasonable signal to noise ratio
provide reproducible and consistent results

be approximately as fast as compilation of the package
support differential scans:

added/fixed bugs in an update?

https://github.com/csutils/csdiff

11/26

https://github.com/csutils/csdiff

‘ RedHat

csmock — Output Format

Error: RESOURCE_LEAK (CWE-772):
src/fptr.c:450: alloc_fn: Storage is returned from allocation function "calloc"

src/fptr.c:450: var_assign: Assigning: "e" = storage returned from "calloc(24UL, 1UL)".
src/fptr.c:450: overwrite_var: Overwriting "e'

450|-> e = calloc (sizeof (struct opd_ent), 1);

Error: CPPCHECK WARNING (CWE-401):
src/fptr.c:464: error[memleak]: Memory leak: e

464|-> return ret;

Error: RESOURCE_LEAK (CWE-772):
src/fptr 450: alloc_fn: Storage is returned from allocation function "calloc".
src/fptr.c:450: var_assign: Assigning: "e" = storage returned from "calloc(24UL, 1UL)".

src/fptr.c:464: leaked_storage: Variable "e" going out of scope leaks the storage it points to.

464|-> return ret;

" in "e = calloc(24UL, 1UL)" leaks the storage that "e" points to.

Static Analysis of a Linux Distribution

12/26

Static Analysis of a Linux Distribution

& RedHat

csmock — Output Format

checker

Error:| RESOURCE_LEAK T772):
src/fptTCTas0TAITOC_fn: Storage is returned from allocation function "calloc"
sre/fptr 50: var_assign: Assigning: "e" = storage returned from "calloc(24UL, 1UL)".

src/fptr.c:450: Querwriting "e" in "e = calloc(24UL, 1UL)" leaks the storage that "e" points to.

key event

Error: CPPCHECK WARNING W » CWE ID

or [memTeak]: Memory leak: e . .
e location info
;rror: RESOURCE_LEAK (CWE-77; Other events

src/fptr.c:450:
src/fptr.c:450
src/fptr.c:464:

W message associated with the key event

464|-> return ret;

450 -> e = calloc (sizeof (struct opd_ent), 1);

turned from allocation function "calloc".

storage returned from "calloc(24UL,

12/26

Static Analysis of a Linux Distribution

& RedHat

csmock — Output Format (Trace Events)

Error: RESOURCE_LEAK (CWE-772):

src/fptr.c
src/fptr

450: alloc_fn: Storage is returned from allocation function "calloc"

var_assign: Assigning: "e" = storage returned from "calloc(24UL, 1UL)"

src/fptr.c:450: overwrite var: Overwriting "e" in "e = calloc(24UL, 1UL)" leaks the storage that "e" points to.

450 -> e = calloc (sizeof (struct opd_ent), 1);

12/26

Static Analysis of a Linux Distribution

& RedHat

How could we fix all the 3 reports?

--- a/src/fptr.c
+++ b/src/fptr.c

438,28 +438,29 @@
GE1f_Addr
opd_size (struct prelink.info *info, GELf_Word entsize)
{
struct opd_lib *1 = info->ent->opd;
int i;
GE1f_Addr ret = 0;
struct opd.ent *e;
struct opd-fptr *f;
for (i = 0; i < l->nrefs; ++i)
if ((f = (struct opd.fptr *) 1->u.refp[il->ent)->ent == NULL)
e = calloc (sizeof (struct opd.ent), 1);
if (e == NULL)
error (0, ENOMEM, "%s: Could not create OPD table",
info->ent->filename) ;
return -1;
e->val = f->val;
e->gp = f£->gp;
e->opd = ret | OPD.ENT_NEW;
+ f->ent = e;
ret += entsize;
}

return ret;

13/26

& RedHat

Upstream vs. Enterprise

Different approaches to static analysis:

Upstream
Fix as many bugs as possible.

False positive ratio increases over time!

Enterprise
Run differential scans to verify code changes.
Up to 10% of bugs usually detected as new in an update.

Up to 10% of them usually confirmed as real by developers.

Static Analysis of a Linux Distribution

14 /26

& RedHat
Agenda

Dynamic Analysis and Formal Verification

Dynamic Analysis and Formal Verification

& RedHat

Dynamic Analysis

Executes code in a modified run-time environment.

Embedded in compilers: address sanitizer, thread sanitizer, UB sanitizer, ...
Standalone tools: valgrind, strace, ...

Not so easy to automate as static analysis.

Good to have some test-suite to begin with.

15/26

Dynamic Analysis and Formal Verification

& RedHat
Dynamic Analysis of RPM Packages

Experimental csmock plug-ins for valgrind and strace:

SRPM == == csmock m = list of bugs
TR

clang cppcheck valgrind strace

$ sudo yum install csmock-plugin-valgrind
$ -t valgrind -r fedora-rawhide-x86_64 *.src.rpm

16 /26

Dynamic Analysis and Formal Verification

& RedHat
Tests Embedded in RPM Packages

$ fedpkg clone -a logrotate

$ cd logrotate

$ grep -A6 'Ybuild' logrotate.spec
build

%configure

%make_build

%check
Ymake_build check

$ fedpkg srpm

$ rpmbuild --rebuild *.src.rpm

17/26

Dynamic Analysis and Formal Verification

& RedHat
Dynamic Analysis of RPM Packages — Simple Approach

Dynamic analyzers usually support tracing of child processes.

Let's combine it together:

--trace-children=yes rpmbuild --rebuild *.src.rpm

--follow-forks rpmbuild --rebuild *.src.rpm

But did we want to dynamically analyze rpmbuild, bash, make, etc.?

This makes the analysis extremely slow.

We get reports unrelated to *.src.rpm.

18/26

Dynamic Analysis and Formal Verification

& RedHat
Dynamic Analysis of RPM Packages — Better Approach

Produce binaries that will launch a dynamic analyzer for themselves.

We can use a compiler wrapper to instrument the build of an RPM package:

$ PATH=$(--print-path-to-wrap) : $PATH

$ CSWRAP_ADD_CFLAGS=-W1,--dynamic-linker,/usr/bin/csexec-loader

$ CSEXEC_WRAP_CMD=valgrind

$ --rebuild *.src.rpm

Only binaries produced in %build will run through valgrind in %check.

19/26

Dynamic Analysis and Formal Verification

& RedHat

Program Interpreter

Program interpreter specified by shebang:

$ -1 /usr/bin/yum
#!/usr/bin/python3

$ [...1]. — /usr/bin/yum [...]

Program interpreter specified by ELF header:

$ /sbin/logrotate
/sbin/logrotate: ELF 64-bit LSB shared object, x86-64, version 1 (SYSV),
dynamically linked, interpreter /1ib64/ld-linux-x86-64.s0.2, BuildID[shall=...

ELF interpreter can be set to a custom value when linking the binary:

$./logrotate
./logrotate: ELF 64-bit LSB shared object, x86-64, version 1 (SYSV),
dynamically linked, interpreter /usr/bin/csexec-loader, BuildID[shaill=...

20/26

Dynamic Analysis and Formal Verification

& RedHat

Wrapper of Dynamic Linker — Implementation

csexec works as a wrapper of the system dynamic linker:
https://github.com/csutils/cswrap/wiki/csexec

$CSEXEC_WRAP_CMD can specify a dynamic analyzer to use.

csexec runs the system dynamic linker explicitly (to eliminate self-loop):
./logrotate [...] —— wvalgrind /1ib64/1d-1linux-x86-64.s0.2 ./logrotate [...]

21/26

https://github.com/csutils/cswrap/wiki/csexec

Dynamic Analysis and Formal Verification

& RedHat

Wrapper of Dynamic Linker — Evaluation

No completely unrelated bug reports.

Minimal performance overhead.

Minimal interference with commonly used testing frameworks.

Able to successfully run upstream test-suite of GNU coreutils (without valgrind).

Some tests fail if we wrap them by valgrind though:

a test that verifies the count open file descriptors
a test that intentionally sets non-existing $TMPDIR

22/26

Dynamic Analysis and Formal Verification

& RedHat
Automation of Formal Verification (AUFOVER)

Project supported by Technology Agency of the Czech Republic:
https://starfos.tacr.cz/en/project/ TH04010192

Driven by Honeywell as the main participant.

Red Hat was integrating tools developed at Masaryk University:

Divine — explicit-state model checking

Symbiotic — instrumentation, slicing and symbolic execution

Now available in Fedora:

https://lists.fedoraproject.org/archives/list/devel@lists.fedoraproject.org/thread/RQBBWQOCMYVVEAIGMTX4MNHBIRALRNA3/

23/26

https://starfos.tacr.cz/en/project/TH04010192
https://lists.fedoraproject.org/archives/list/devel@lists.fedoraproject.org/thread/RQBBWQOCMYVVEAIGMTX4MNHBIRALRNA3/

Dynamic Analysis and Formal Verification

& RedHat
Formal Verification of RPM Packages

Experimental csmock plug-ins for CBMC, Symbiotic, and Divine:

SRPM == == csmock m = list of bugs
s

clang cmbc symbiotic divine

$ sudo yum install csmock-plugin-symbiotic
$ csmock -r fedora-34-x86_64 -t symbiotic ${pkg}.src.rpm

24 /26

& RedHat

Example - Report from Symbiotic

Error: SYMBIOTIC WARNING: [#def1]
libp11-0.4.11/examples/auth.c:96: error: memory error: out of bound pointer

Dynamic Analysis and Formal Verification

196: note: Additional Info: address: (ReadLSB w64 © PKCS11 find_token):(Add w64 24

18446744073709551615]

len 8 bytes, [8 times 0x0] (i64: 0)
len 4 bytes, [4 times 0x0] (i32: 0)
Non-deterministic values: PKCS11_enumerate_slots: len 4 bytes, [4 times 0x0] (i32: 0)

len 8 bytes, [0x1]|7 times 0x0] (i64: 1)
(offset): len 8 bytes, [8 times 0x0] (i64: 0)

libp11-0.4.11/examples/auth.c:96: note: call stack: function main (=2, =0)
1ibp11-0.4.11/examples/auth.c

1ibp11-0.4.11/examples/auth.c : Additional Info: (ReadlLSB w64 © PKCS11 find_token_off))
1libp11-0.4.11/examples/auth.c : Additional Info: example: 0:279
1libp11-0.4.11/examples/auth.c : Additional Info: segment range: [0, 18446744073709551615]
libp11-0.4.11/examples/auth.c: : Additional Info: offset range: [0,
libp11-0.4.11/examples/auth.c : Additional Info: pointing to: none
1ibp11-0.4.11/examples/auth.c Non-deterministic values: PKCS11_CTX_new:
1libp11-0.4.11/examples/auth.c Non-deterministic values: PKCS11_CTX_load:
1libp11-0.4.11/examples/auth.c

1libp11-0.4.11/examples/auth.c Non-deterministic values: PKCS11_find_token:
1libp11-0.4.11/examples/auth.c Non-deterministic values: PKCS11_find_token:

#

#

96| -> if (slot == NULL || slot->token == NULL) {

#

#

25 /26

Dynamic Analysis and Formal Verification

& RedHat
AUFOVER - Experiments

Unable to complete formal verification for most RPM packages.
Timeouts help to get partial results in a predictable amount of time.

aufover-benchmark (covered by Cl) is now publicly available:
https://github.com/aufover/aufover-benchmark

Our experiments can be easily reproduced on any Fedora system!

26 /26

https://github.com/aufover/aufover-benchmark

& RedHat
Slides Available Online

https://kdudka.fedorapeople.org/muni2?2.pdf

https://kdudka.fedorapeople.org/muni22.pdf

	Linux Distribution, Reproducible Builds
	Static Analysis of a Linux Distribution
	Dynamic Analysis and Formal Verification

