
Static Analysis of a Linux Distribution

Red Hat

Kamil Dudka

March 13th 2023

Why do we use static analysis at Red Hat?

... to find programming mistakes soon enough – example:

Error: SHELLCHECK_WARNING:
/etc/rc.d/init.d/squid:136:10: warning: Use "${var:?}" to ensure this never expands to /* .
134| RETVAL=$?
135| if [$RETVAL -eq 0] ; then
136|-> rm -rf $SQUID_PIDFILE_DIR/*
137| start
138| else

https://bugzilla.redhat.com/1202858 – [UNRELEASED] restarting
testing build of squid results in deleting all files in hard-drive

Static analysis is required for Common Criteria certification.

1 / 26

https://bugzilla.redhat.com/1202858

Agenda

1 Linux Distribution, Reproducible Builds

2 Static Analysis of a Linux Distribution

3 Dynamic Analysis of a Linux Distribution

4 Static Analysis Results Interchange Format (SARIF)

Linux Distribution, Reproducible Builds

Linux Distribution

operating system (OS)

based on the Linux kernel

a lot of other programs running in user space

usually open source

2 / 26

Linux Distribution, Reproducible Builds

Upstream vs. Downstream

Upstream SW projects – usually independent

Downstream distribution of upstream SW projects

Red Hat uses the RPM package manager

Files on the file system owned by RPM packages:

Dependencies form an oriented graph over packages.

We can query package database.

We can verify installed packages.

3 / 26

Linux Distribution, Reproducible Builds

Fedora vs. RHEL

Fedora

new features available early

driven by the community (developers, users, . . .)

RHEL (Red Hat Enterprise Linux)

stability and security of existing deployments

driven by Red Hat (and its customers)

4 / 26

Linux Distribution, Reproducible Builds

Where do RPM packages come from?

Developers maintain source RPM packages (SRPMs).

Binary RPMs can be built from SRPMs using rpmbuild:

rpmbuild --rebuild git-2.39.2-1.fc39.src.rpm

Binary RPMs can be then installed on the system:

sudo dnf install git

5 / 26

Linux Distribution, Reproducible Builds

Reproducible Builds

Local builds are not reproducible.

mock – chroot-based tool for building RPMs:

mock -r fedora-rawhide-x86 64 git-2.39.2-1.fc39.src.rpm

koji – service for scheduling build tasks

koji build rawhide git-2.39.2-1.fc39.src.rpm

Easy to hook static analyzers on the build process!

Who cares about reproducible builds?
https://reproducible-builds.org/who/projects/

6 / 26

https://reproducible-builds.org/who/projects/

Agenda

1 Linux Distribution, Reproducible Builds

2 Static Analysis of a Linux Distribution

3 Dynamic Analysis of a Linux Distribution

4 Static Analysis Results Interchange Format (SARIF)

Static Analysis of a Linux Distribution

Static Analysis of a Linux Distribution

Thousands of packages developed independently of each other.

Huge number of (potential?) defects in certain projects.

No control over technologies and programming languages.

No control over upstream coding style.

There is no person that would be familiar with all the code of a big project.

7 / 26

Static Analysis of a Linux Distribution

Static Analysis at Red Hat in Numbers

Preliminary scan of all RHEL-9 packages in February 2021.

Analyzed 480 million LoC (Lines of Code) in 3700 packages.

98.6 % packages scanned successfully.

Approx. 680 000 potential bugs detected in total.

Approx. one potential bug per each 750 LoC.

8 / 26

Static Analysis of a Linux Distribution

Analysis of RPM Packages

Command-line tool to run static analyzers on RPM packages.

One interface, one output format, plug-in API for (static) analyzers.

Fully open-source, available in Fedora and CentOS.

SRPM list of bugscsmock

coverityshellcheckcppcheckclanggcc

9 / 26

Static Analysis of a Linux Distribution

csmock – Supported Static Analyzers

C C++ C# Java Go JavaScript PHP Python Ruby Shell

gcc X X
gcc -fanalyzer X
clang --analyze X X
cppcheck X X
coverity X X X X X X X X X
gitleaks X X X X X X X X X
shellcheck X
pylint X
bandit X
infer X X
smatch X

Need more?

https://github.com/mre/awesome-static-analysis#user-content-programming-languages-1
10 / 26

https://github.com/mre/awesome-static-analysis#user-content-programming-languages-1

Static Analysis of a Linux Distribution

What is important for developers?

The static analyzers need to:

be fully automatic

provide reasonable signal to noise ratio

provide reproducible and consistent results

be approximately as fast as compilation of the package

support differential scans:

added/fixed bugs in an update?

https://github.com/csutils/csdiff

11 / 26

https://github.com/csutils/csdiff

Static Analysis of a Linux Distribution

csmock – Output Format

12 / 26

Static Analysis of a Linux Distribution

csmock – Output Format

checker

key event
CWE ID

other events
location info

message associated with the key event

12 / 26

Static Analysis of a Linux Distribution

csmock – Output Format (Trace Events)

Error: RESOURCE_LEAK (CWE-772):
src/fptr.c:447: cond_true: Condition "i < l->nrefs", taking true branch.
src/fptr.c:448: cond_true: Condition "(f = (struct opd_fptr *)l->u.refp[i]->ent)->ent == NULL", taking true branch.
src/fptr.c:450: alloc_fn: Storage is returned from allocation function "calloc".
src/fptr.c:450: var_assign: Assigning: "e" = storage returned from "calloc(24UL, 1UL)".
src/fptr.c:451: cond_false: Condition "e == NULL", taking false branch.
src/fptr.c:456: if_end: End of if statement.
src/fptr.c:462: loop: Jumping back to the beginning of the loop.
src/fptr.c:447: loop_begin: Jumped back to beginning of loop.
src/fptr.c:447: cond_true: Condition "i < l->nrefs", taking true branch.
src/fptr.c:448: cond_true: Condition "(f = (struct opd_fptr *)l->u.refp[i]->ent)->ent == NULL", taking true branch.
src/fptr.c:450: overwrite_var: Overwriting "e" in "e = calloc(24UL, 1UL)" leaks the storage that "e" points to.
448| if ((f = (struct opd_fptr *) l->u.refp[i]->ent)->ent == NULL)
449| {
450|-> e = calloc (sizeof (struct opd_ent), 1);
451| if (e == NULL)
452| {

12 / 26

Static Analysis of a Linux Distribution

How could we fix all the 3 reports?
--- a/src/fptr.c

+++ b/src/fptr.c

@@ -438,28 +438,29 @@

GElf Addr

opd size (struct prelink info *info, GElf Word entsize)

{

struct opd lib *l = info->ent->opd;

int i;

GElf Addr ret = 0;

struct opd ent *e;

struct opd fptr *f;

for (i = 0; i < l->nrefs; ++i)

if ((f = (struct opd fptr *) l->u.refp[i]->ent)->ent == NULL)

{

e = calloc (sizeof (struct opd ent), 1);

if (e == NULL)

{

error (0, ENOMEM, "%s: Could not create OPD table",

info->ent->filename);

return -1;

}

e->val = f->val;

e->gp = f->gp;

e->opd = ret | OPD ENT NEW;

+ f->ent = e;

ret += entsize;

}

return ret;

}

13 / 26

Static Analysis of a Linux Distribution

Upstream vs. Enterprise

Different approaches to static analysis:

Upstream

Fix as many bugs as possible.

False positive ratio increases over time!

Enterprise

Run differential scans to verify code changes.

Up to 10% of bugs usually detected as new in an update.

Up to 10% of them usually confirmed as real by developers.

14 / 26

Agenda

1 Linux Distribution, Reproducible Builds

2 Static Analysis of a Linux Distribution

3 Dynamic Analysis of a Linux Distribution

4 Static Analysis Results Interchange Format (SARIF)

Dynamic Analysis of a Linux Distribution

Dynamic Analysis

Executes code in a modified run-time environment.

Embedded in compilers: address sanitizer, thread sanitizer, UB sanitizer, . . .

Standalone tools: valgrind, strace, . . .

Not so easy to automate as static analysis.

Good to have some test-suite to begin with.

15 / 26

Dynamic Analysis of a Linux Distribution

Dynamic Analysis of RPM Packages

Experimental support for GCC sanitizers:
https://github.com/csutils/csmock/pull/87

csmock plug-ins for valgrind and strace:

SRPM list of bugscsmock

stracevalgrindcppcheckclanggcc

$ sudo dnf install csmock-plugin-valgrind

$ csmock -t valgrind -r fedora-rawhide-x86 64 *.src.rpm

16 / 26

https://github.com/csutils/csmock/pull/87

Dynamic Analysis of a Linux Distribution

Tests Embedded in RPM Packages

$ fedpkg clone -a logrotate

$ cd logrotate

$ grep -A6 '%build' logrotate.spec

%build

%configure

%make_build

%check

%make_build check

$ fedpkg srpm

$ rpmbuild --rebuild *.src.rpm

17 / 26

Dynamic Analysis of a Linux Distribution

Dynamic Analysis of RPM Packages – Simple Approach

Dynamic analyzers usually support tracing of child processes.

Let’s combine it together:

valgrind --trace-children=yes rpmbuild --rebuild *.src.rpm

strace --follow-forks rpmbuild --rebuild *.src.rpm

But did we want to dynamically analyze rpmbuild, bash, make, etc.?

This makes the analysis extremely slow.

We get reports unrelated to *.src.rpm.

18 / 26

Dynamic Analysis of a Linux Distribution

Dynamic Analysis of RPM Packages – Better Approach

Produce binaries that will launch a dynamic analyzer for themselves.

We can use a compiler wrapper to instrument the build of an RPM package:

$ export PATH=$(cswrap --print-path-to-wrap):$PATH
$ export CSWRAP_ADD_CFLAGS=-Wl,--dynamic-linker,/usr/bin/csexec-loader

$ export CSEXEC_WRAP_CMD=valgrind

$ rpmbuild --rebuild *.src.rpm

Only binaries produced in %build will run through valgrind in %check.

19 / 26

Dynamic Analysis of a Linux Distribution

Program Interpreter

Program interpreter specified by shebang:
$ head -1 /usr/bin/dnf

#!/usr/bin/python3

$ /usr/bin/dnf [...] −→ /usr/bin/python3 /usr/bin/dnf [...]

Program interpreter specified by ELF header:
$ file /sbin/logrotate

/sbin/logrotate: ELF 64-bit LSB shared object, x86-64, version 1 (SYSV),

dynamically linked, interpreter /lib64/ld-linux-x86-64.so.2, BuildID[sha1]=...

ELF interpreter can be set to a custom value when linking the binary:
$ file ./logrotate

./logrotate: ELF 64-bit LSB shared object, x86-64, version 1 (SYSV),

dynamically linked, interpreter /usr/bin/csexec-loader, BuildID[sha1]=...

20 / 26

Dynamic Analysis of a Linux Distribution

Wrapper of Dynamic Linker – Implementation

csexec works as a wrapper of the system dynamic linker:
https://github.com/csutils/cswrap/wiki/csexec

$CSEXEC WRAP CMD can specify a dynamic analyzer to use.

If the variable is unset, the binaries are executed natively.

csexec runs the system dynamic linker explicitly (to eliminate self-loop):
./logrotate [...] −→ valgrind /lib64/ld-linux-x86-64.so.2 ./logrotate [...]

21 / 26

https://github.com/csutils/cswrap/wiki/csexec

Dynamic Analysis of a Linux Distribution

Wrapper of Dynamic Linker – Evaluation

No completely unrelated bug reports.

Minimal performance overhead.

Minimal interference with commonly used testing frameworks.

Able to successfully run upstream test-suite of GNU coreutils (without valgrind).

Some tests fail if we wrap them by valgrind though:

a test that verifies the count open file descriptors

a test that intentionally sets non-existing $TMPDIR
. . .

22 / 26

Agenda

1 Linux Distribution, Reproducible Builds

2 Static Analysis of a Linux Distribution

3 Dynamic Analysis of a Linux Distribution

4 Static Analysis Results Interchange Format (SARIF)

Static Analysis Results Interchange Format (SARIF)

Human-Readable Output Formats

GCC’s default output format is both human and machine-readable.
encode.c: In function ’th set path’:

encode.c:91:17: warning: use of possibly-NULL ’*t.th buf.gnu longname’ where non-null expected [CWE-690] [-Wanalyzer-possible-null-argument]

encode.c:87:12: note: (1) following ’true’ branch...

encode.c:90:42: note: (2) ...to here

encode.c:90:42: note: (3) this call could return NULL

encode.c:91:17: note: (4) argument 2 (’strdup(pathname)’) from (3) could be NULL where non-null expected

Supported by csdiff and IDEs (Integrated Development Environments).

csdiff’s parser needs to be tweaked for new versions of GCC
(and other tools with GCC-compatible output format).

Some tools produce human-redable output not suitable for parsing.

23 / 26

Static Analysis Results Interchange Format (SARIF)

Machine-Readable Output Formats

Usually based on JSON (GCC, ShellCheck) or XML (CppCheck, Valgrind).

Example – native JSON format supported by GCC-9 and newer:
[{"kind": "warning", "locations": [{"finish": {"byte-column": 60, "display-column": 74, "line": 91, "file": "encode.c", "column": 74},

"caret": {"byte-column": 3, "display-column": 17, "line": 91, "file": "encode.c", "column": 17}}], "path": [{"location":

{"byte-column": 5, "display-column": 12, "line": 87, "file": "encode.c", "column": 12}, "description": "following ’true’ branch...",

"depth": 1, "function": "th_set_path"}, {"location": {"byte-column": 28, "display-column": 42, "line": 90, "file": "encode.c", "column": 42},

"description": "...to here", "depth": 1, "function": "th_set_path"}, {"location": {"byte-column": 28, "display-column": 42, "line": 90,

"file": "encode.c", "column": 42}, "description": "this call could return NULL", "depth": 1, "function": "th_set_path"},

{"location": {"byte-column": 3, "display-column": 17, "line": 91, "file": "encode.c", "column": 17},

"description": "argument 2 (’strdup(pathname)’) from (3) could be NULL where non-null expected", "depth": 1, "function": "th_set_path"}],

"column-origin": 1, "option": "-Wanalyzer-possible-null-argument", "escape-source": false, "children": [{"kind": "note", "escape-source": false,

"locations": [{"finish": {"byte-column": 20, "display-column": 20, "line": 144, "file": "/usr/include/string.h", "column": 20}, "caret":

{"byte-column": 14, "display-column": 14, "line": 144, "file": "/usr/include/string.h", "column": 14}}],

"message": "argument 2 of ’strncpy’ must be non-null"}],

"option_url": "https://gcc.gnu.org/onlinedocs/gcc/Static-Analyzer-Options.html#index-Wanalyzer-possible-null-argument",

"message": "use of possibly-NULL ’*t.th_buf.gnu_longname’ where non-null expected", "metadata": {"cwe": 690}}]

These formats are not human-readable.

Each tool uses its own JSON/XML scheme.

24 / 26

Static Analysis Results Interchange Format (SARIF)

Static Analysis Results Interchange Format (SARIF)

JSON-based data format standardized by OASIS:
https://docs.oasis-open.org/sarif/sarif/v2.1.0/os/sarif-v2.1.0-os.html

Extremely complex:

Tree structure with excessive nesting and cross-references.

Wastes bandwidth and memory.

Multiple ways to express the same thing.

Different tools/services implement it differently.

Supported by csdiff as both input and output data format.

Supported by GitHub and used by various GitHub Actions.

25 / 26

https://docs.oasis-open.org/sarif/sarif/v2.1.0/os/sarif-v2.1.0-os.html

Static Analysis Results Interchange Format (SARIF)

Differential ShellCheck

A GitHub Action using ShellCheck, csdiff, and SARIF:
https://github.com/marketplace/actions/differential-shellcheck

Easy to enable for any GitHub project where shell scripts are maintained:
https://github.com/logrotate/logrotate/pull/456

Automatically checks for potential coding issues introduced by pull requests:
https://github.com/logrotate/logrotate/pull/465

Warnings appear directly in the native GitHub user interface:
https://github.com/logrotate/logrotate/pull/456/files

26 / 26

https://github.com/marketplace/actions/differential-shellcheck
https://github.com/logrotate/logrotate/pull/456
https://github.com/logrotate/logrotate/pull/465
https://github.com/logrotate/logrotate/pull/456/files

Slides Available Online

https://kdudka.fedorapeople.org/muni23.pdf

https://kdudka.fedorapeople.org/muni23.pdf

	Linux Distribution, Reproducible Builds
	Static Analysis of a Linux Distribution
	Dynamic Analysis of a Linux Distribution
	Static Analysis Results Interchange Format (SARIF)

