
How to use data from static analysers efficiently?

Red Hat

Onďrej Vaš́ık and Kamil Dudka

2014-02-07

Abstract

There is a lot of static analysers for searching programming
issues in various languages. This presentation will focus on the
most common ones for analyzing C/C++, especially Coverity,
Cppcheck, CLang, and GCC warnings. We are going to cover
efficient ways how to get the biggest benefits from using these
tools, how to automate usage of these tools in your project
and how to reduce the time spent on reviewing the results and
fixing the real bugs introduced in the development.

Agenda

1 Static Analysis – What Does It Mean?

2 How to Use Data from Static Analysers Efficiently?

3 How to Automate Static Analysis of RPM Packages?

1 / 22

Static Analysis – What Does It Mean?

Static Analysis

generic definition: analysis of code without executing it

already done by the compiler (optimization, warnings, . . .)

we are interested in using static analysis to find bugs

2 / 22

How to Use Data from Static Analysers Efficiently?

Agenda

1 Static Analysis – What Does It Mean?

2 How to Use Data from Static Analysers Efficiently?

3 How to Automate Static Analysis of RPM Packages?

3 / 22

How to Use Data from Static Analysers Efficiently?

Answer in 10 minutes?

let’s try that! :)

3 / 22

How to Use Data from Static Analysers Efficiently?

Use more static analyzers as frequently
as possible

continuous integration!

don’t use them in production build system

be sure analysis takes some time - comparable to compilation
time =⇒ balance is needed

Fedora stats

1500 C/C++ packages from 6500+ scanned
150M lines of code → 150k potential defects → 50k+ real
defects
Coverity+Cppcheck+Gcc warnings = 3+ weeks scan time

You can join scan.coverity.com for free (if OSS)

4 / 22

How to Use Data from Static Analysers Efficiently?

Mark the false positives with annotations,
use difference scan tools

annotations → comments used to suppress the warnings

difference scanning

1st scan : 30 defects, 10 real, 20 FP
2nd scan (after 6 months) : 5 new defects → 25 defects, 2
real, 23 FP
Using e.g. csdiff : 5 new defects : 2 real, 3 FP

5 / 22

How to Use Data from Static Analysers Efficiently?

Review the result carefully, think about the
output twice!

6 / 22

How to Use Data from Static Analysers Efficiently?

Focus on high priority defect types!

Common ”real bugs” defects:

use after free (71% marked real)
resource leak (65% marked real)
missing initialization (43% marked real, but highest
”needs fix now” rate)

In more details:

Defect type Defect occurrence Real defects Needs fix

Wrong return value check 13.6 % 37.9 % 9.4 %

Deadcode 12.5 % 46.1 % 8.5 %

Invalid dereference 10.0 % 37.9 % 10.2 %

Resource leaks 8.1 % 65.5 % 10.9 %

Security related 8.0 % 40.2 % 18.0 %

Missing initialization 7.4 % 43.4 % 33.3 %

7 / 22

How to Use Data from Static Analysers Efficiently?

Focus on real-world defects?

Might be possible in future! → a lot of crash data
at https://retrace.fedoraproject.org/faf/

tool to match crashes to static analyzer output in development
(https://github.com/mmilata/mock-with-analysis/tree/crash-correlation) → still long
run to get it more useful (hard to match backtrace to defects)

8 / 22

https://retrace.fedoraproject.org/faf/
https://github.com/mmilata/mock-with-analysis/tree/crash-correlation

How to Automate Static Analysis of RPM Packages?

Agenda

1 Static Analysis – What Does It Mean?

2 How to Use Data from Static Analysers Efficiently?

3 How to Automate Static Analysis of RPM Packages?

9 / 22

How to Automate Static Analysis of RPM Packages?

How to Automate Static Analysis of RPMs?

Static analysis already used by compilers (in our case GCC).

How can we efficiently process GCC warnings?

How can we plug static analyzers into our build process?

How can we fully automatically analyze a given SRPM?

How can we build a differential static analysis on top of it?

9 / 22

How to Automate Static Analysis of RPM Packages?

Processing GCC Warnings – Problems

1 Some projects produce a lot of warnings during build.

2 Some projects do not produce any warnings during build.

3 Compilers do not use absolute paths in diagnostic messages.

4 Some projects use obscure build systems (samba, ksh, etc.).

5 Compiler warnings are difficult to collect consistently
when building in parallel.

10 / 22

How to Automate Static Analysis of RPM Packages?

Processing GCC Warnings – Solutions

1 We want to make sure that we are not introducing new
warnings whenever changing the code (while not touching
the code that is known to work).
=⇒ We need an easy to use diff tool for compiler warnings.

2 We want to adjust warning level (ideally in a way that is fully
transparent to the build process).

3 We need a tool to translate relative to absolute paths
in diagnostic messages.

4 The easiest way is to put a compiler wrapper to $PATH.

5 We can extend such a compiler wrapper to synchronize writes
of diagnostic messages in order to get a usable output when
building in parallel.

11 / 22

How to Automate Static Analysis of RPM Packages?

Plugging Static Analyzers into Build Process

How to plug other static analyzers into the build process?

We put another compiler wrapper to $PATH because:

We do not want to scan code that is not going to run.

We use the exactly same configuration (header files, defines)
as we use for build.

Currently supported static analyzers:

Coverity Analysis

Cppcheck

Clang

GCC warnings (as mentioned above)

12 / 22

How to Automate Static Analysis of RPM Packages?

Coverity Analysis

Enterprise static analyzer, closed source.

Not for free, but available to open source project maintainers.

During the build, Coverity only captures intermediate code to
a so called intermediate directory.

The static analysis itself runs in a separate step
(it may even run on another machine).

Provides its own compiler wrapper.

13 / 22

How to Automate Static Analysis of RPM Packages?

Cppcheck

Based on pattern matching (very lightweight static analysis).

Can be run blindly on a directory with sources, but then:

It tries several combinations of -D flags.

Cppcheck ignores missing include files in this mode.

This usually implies many false positives and false negatives.

Upstream does not provide any compiler wrapper.

We implemented our own compiler wrapper for Cppcheck:

Previously implemented as a shell script, now written in C.

Runs Cppcheck in parallel =⇒ significant performance boost
when chained with other compiler wrappers.

It is going to be packaged for Fedora!

14 / 22

How to Automate Static Analysis of RPM Packages?

Clang

A set of static analysis-based checkers running on top
of LLVM (Low Level Virtual Machine).

It is written in C++ and recent versions are difficult to
compile with older tool chains, which we use for building
RHEL packages.

Upstream maintains a compiler wrapper:

The compiler wrapper is written in Perl.

Too slow to be chained with other compiler wrappers.

Currently bottleneck when running autoconf checks, etc.

15 / 22

How to Automate Static Analysis of RPM Packages?

Plugging Static Analyzers into Build Process

We do not run static analyzers during production build.

But we also use mock (chroot-based tool for building RPMs).

The build environment is very close to what we use
for building RPMs in production.

On the other hand, we are able to make destructive hacks
in the chroot in order to make the static analysis succeed
(e.g. to simplify system header files for tools that would
not parse them otherwise).

16 / 22

How to Automate Static Analysis of RPM Packages?

Overview of Helper Tools We Developed

cswrap Generic compiler wrapper.
Makes it possible to add/remove compiler flags.
Translates relative to absolute paths in diagnostic messages.
https://git.fedorahosted.org/cgit/cswrap.git

cscppc Compiler wrapper running cppcheck in background.
https://git.fedorahosted.org/cgit/cscppc.git

csmock Mock-based tool for automated static analysis of SRPMs.
User only specifies a mock profile and list of analyzers to use.
Uses static analyzers and compiler wrappers mentioned above.
https://git.fedorahosted.org/cgit/csmock.git

csdiff Set of command-line utilities for comparing, filtering,
and formatting the list of defects.
https://git.fedorahosted.org/cgit/codescan-diff.git

17 / 22

https://git.fedorahosted.org/cgit/cswrap.git
https://git.fedorahosted.org/cgit/cscppc.git
https://git.fedorahosted.org/cgit/csmock.git
https://git.fedorahosted.org/cgit/codescan-diff.git

How to Automate Static Analysis of RPM Packages?

Use of Compiler Wrappers – Process Tree (1/4)

*---- csmock -a cppcheck,clang -p fedora-20-x86_64 package.src.srpm

|

*---- mock -r fedora-20-x86_64 --chroot ...

|

*---- rpmbuild -bc ...

|

*---- make -j13

|

*---- gcc ... unit0.c

|

|

|

|

|

|

|

|

|

|

|

*---- gcc ... unit1.c

|

|

|

|

...

18 / 22

How to Automate Static Analysis of RPM Packages?

Use of Compiler Wrappers – Process Tree (2/4)

*---- csmock -a cppcheck,clang -p fedora-20-x86_64 package.src.srpm

|

*---- mock -r fedora-20-x86_64 --chroot ...

|

*---- rpmbuild -bc ...

|

*---- make -j13

|

*---- ccc-analyzer ... unit0.c

| |

| *---- gcc ... unit0.c

|

|

|

|

|

|

|

|

|

*---- ccc-analyzer ... unit1.c

| |

| *---- clang-analyzer ... unit1.c

|

|

...

19 / 22

How to Automate Static Analysis of RPM Packages?

Use of Compiler Wrappers – Process Tree (3/4)

*---- csmock -a cppcheck,clang -p fedora-20-x86_64 package.src.srpm

|

*---- mock -r fedora-20-x86_64 --chroot ...

|

*---- rpmbuild -bc ...

|

*---- make -j13

|

*---- ccc-analyzer ... unit0.c

| |

| *---- cscppc ... unit0.c

| |

| *---- gcc ... unit0.c

| |

| |

| |

| *---- cppcheck ... unit0.c

|

|

|

*---- ccc-analyzer ... unit1.c

| |

| *---- clang-analyzer ... unit1.c

|

|

...

20 / 22

How to Automate Static Analysis of RPM Packages?

Use of Compiler Wrappers – Process Tree (4/4)

*---- csmock -a cppcheck,clang -p fedora-20-x86_64 package.src.srpm

|

*---- mock -r fedora-20-x86_64 --chroot ...

|

*---- rpmbuild -bc ...

|

*---- make -j13

|

*---- ccc-analyzer ... unit0.c

| |

| *---- cscppc ... unit0.c

| |

| *---- cswrap ... unit0.c

| | |

| | *---- gcc ... unit0.c

| |

| *---- cswrap ... unit0.c

| |

| *---- cppcheck ... unit0.c

|

*---- ccc-analyzer ... unit1.c

| |

| *---- cswrap ... unit1.c

| |

| *---- clang-analyzer ... unit1.c

...

21 / 22

How to Automate Static Analysis of RPM Packages?

Conclusion

Using a single static analyzer is insufficient.

We provide a user-friendly way to run multiple static analyzers
(currently Coverity, Cppcheck, Clang, and GCC warnings).

We maintain a set of easy to use command-line utilities for
processing the results of static analyzers (codescan-diff).

We are now getting all the helper tools into Fedora!

22 / 22

	Static Analysis – What Does It Mean?
	How to Use Data from Static Analysers Efficiently?
	How to Automate Static Analysis of RPM Packages?

